PHYSICAL CHEMISTRY

DPP No. 58

Total Marks: 60

Max. Time: 60 min.

Topic : Chemical Equilibrium

Type of Questions

M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.20

(3 marks, 3 min.) [60, 60]

Single choice Objective ('-1' negative marking) Q.1 to Q.20 (3 marks, 3 min.)

1. The equilibrium constant of the reaction $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$ is 4×10^{-3} atm^{-1/2}. The equilibrium constant of the reaction $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ would be:

(A) 250 atm
(B) 6.25×10^3 atm
(C) 0.25×10^4 atm
(D) 6.25×10^4 atm

2. $log \frac{K_p}{K_c} + log RT = 0$ is the relationship for the following gaseous phase reaction :

(A) $PCI_5 \rightleftharpoons PCI_3 + CI_2$ (B) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ (C) $H_2 + I_2 \rightleftharpoons 2HI$ (D) $N_2 + 3H_2 \rightleftharpoons 2NH_3$

3. For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$, the value of K_C does not depend upon :

(a) Initial concentration of the reactants (b) Pressure (c) Temperature (d) Catalyst

(A) Only c

(B) Only a,b

(C) Only a,b,d

(D) Only b.o

4. When alcohol (C₂H₅OH) and acetic acid are mixed together in equimolar ratio at 27°C, 33% is converted into ester. Then the K_C for the following equilibrium is:

5. The equilibrium constant (K_p) for the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ is 16 atm. If the volume of the container is reduced to one half its original volume, the value of K_p for the reaction at the same temperature will be :

(A) 32 atm

(B) 64 atm

(C) 16 atm

(D) 8 atm

'a' moles of PCl_5 undergo thermal dissociation as : $PCl_5 \rightleftharpoons PCl_3 + Cl_2$. At equilibrium, the mole fraction of PCl_3 is 0.25 and the total pressure is 2 atm. The value of K_n in atm is :

(A) 0.25

(B)

(C) 0 F

(D) Data insufficient

7. A reaction mixture containing H_2 , N_2 and NH_3 has their partial pressure 2 atm, 1 atm and 3 atm respectively at 725 K. If the value of K_p for the reaction : $N_2 + 3H_2 \rightleftharpoons 2NH_3$ is 1.25 atm⁻² at 725 K, in which direction will the net reaction go :

(A) Forward

(B) Backward

(C) No net reaction

(D) Direction of reaction cannot be predicted

8. The extent of dissociation of PCI₅ at a certain temperature is 20 % at one atm equilibrium pressure. Calculate the equilibrium pressure in atm at which this substance is half dissociated at the same temperature :

(A) 0.125

(B) 0.1

(C) 2.5

(D) 0.25

9. Consider the following reactions :

(i) $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$

(ii) $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

The addition of an inert gas at constant volume:

(A) will increase the dissociation of PCI₅ as well as HI.

(B) will reduce the dissociation of PCI_s and not affect the dissociation of HI.

(C) will increase the dissociation of PCI_5 and not affect the dissociation of HI.

(D) will not disturb the equilibrium of the reactions.

10.	The vapour density of N_2O_4 at a certain temperature is 30. What is the percentage dissociation of N_2O_4 at this temperature ?			
	(A) 7.5%	(B) 10%	(C) 15%	(D) 20%
11.	aA + bB \rightleftharpoons cC + dD In above gaseous phase reaction, low pressure and high temperature shift the equilibrium in backward direction. So correct set is : (A) (a + b) > (c + d), Δ H > 0 (B) (a + b) < (c + d), Δ H > 0 (C) (a + b) < (c + d), Δ H < 0 (D) (a + b) > (c + d), Δ H < 0			
12.	On decomposition of NH ₄ HS, the following equilibrium is established : $ NH_4HS(s) \iff NH_3(g) + H_2S(g) $ If the total pressure is P atm, then the equilibrium constant K_P is equal to : (A) P atm (B) P^2 atm ² (C) P^2 / 4 atm ² (D) P^2 / 9 atm ²			
13.	At 425°C, the equilibri (A) is exothermic	t room temperature, the equilibrium constant for the reaction P + Q \improx R + S was calculated to be 4.3 t 425°C, the equilibrium constant became 1.24 × 10 ⁻² . This indicates that the reaction : (A) is exothermic (B) is endothermic (C) could be exothermic or endothermic (D) is not possible		
14.	Consider the reaction : $A(s) \iff 2B(g) + 3C(g)$ If the concentration of C at equilibrium is doubled, then after the equilibrium is re-established, the concentration of B will be : $(A) \ 4/3 \ times \ the \ original \ value \qquad (B) \ 3/4 \ times \ the \ original \ value \qquad (C) \ 1 \ / \ 2\sqrt{2} \ times \ the \ original \ value \qquad (D) \ 2\sqrt{2} \ times \ the \ original \ value \ (D) \ 2\sqrt{2} \ times \ the \ original \ value \ (D) \ 2\sqrt{2} \ times \ the \ original \ value \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \ (D) \ 2\sqrt{2} \ times \ the \ original \$			
15.	Statement-1: For $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$, if more CI_2 is added, the equilibrium will shift in backward direction and hence equilibrium constant will decrease. Statement-2: Addition of a product to the equilibrium mixture always cause the equilibrium to shift backward. (A) Statement-1 is True, Statement-2 is True; Statement -2 is a correct explanation for Statement-1 (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True (E) Statement-1 and Statement-2 both are False.			
16.		1.5 moles each of A,B, C A + B \(\begin{array}{c} C + D \) will be (B) 1/9	· ·	5 mole each of C and D are taken (D) 8/9
17.	(A) Equlibrium conc. o		ous solution of acetic acid : (B) Equlibrium conc. of CH ₃ COO ⁻ decreases. (D) No change will occur.	
18.	9.2 gram of N_2O_4 (g) is taken in a closed one litre vessel and heated, till the following equilibrium is reached : N_2O_4 (g) \Longrightarrow 2 NO_2 (g) At equilibrium, 50% N_2O_4 (g) is dissociated. What is the equilibrium constant (in mol lit ⁻¹) : (A) 0.1 (B) 0.2 (C) 0.4 (D) 2			
19.	A quantity of PCI_5 was heated in a 10 dm³ vessel at 250°C : PCI_5 (g) \Longrightarrow PCI_3 (g) + CI_2 (g). At equilibrium, the vessel contains 0.1 mole of PCI_5 and 0.2 mole of CI_2 . The equilibrium constant of the reaction is : (A) 0.04 mol/L (B) 0.4 mol/L (C) 4 mol/L (D) cannot be determined			
20.	For the equilibrium: H ₂ O(I) \(\rightarrow \) H ₂ what happens if press (A) More water evapor (C) No effect on boiling	ure is applied : rates	(B) The boiling point of (D) The boiling point of	

CLICK HERE >>

DPP No. # 58

1. (D)

2.

(B)

(C) (A) 9.

(B) (D)

(C) 10. (C)

(E)

(B)

6. 11. (A)

7. 12. (A)

8. 13.

(A)

16.

(A)

17.

(B)

18.

(B)

19. (A) 20.

ints & Solutions

DPP No. # 58

1.
$$SO_2(g) + \frac{1}{2}O_2(g) \iff SO_3(g)$$

$$SO_3 \iff SO_2(g) + \frac{1}{2}O_2(g)$$

$$K_p = 4 \times 10^{-3}$$

$$K_p^1 = \frac{1}{Kp}$$

$$K_p^1 = \left(\frac{1}{4 \times 10^{-3}}\right)$$

$$K_p^{\parallel} = (K_p^{\parallel})^2 = \left[\frac{1}{4 \times 10^{-3}}\right]^2 = \left[\frac{1000}{4}\right]^2 = 6250 = 625 \times 10^2$$
 6.25×10⁴ atm.

2.
$$\log \frac{K_P}{K_C} + \log RT = 0$$

$$\log\left(\frac{K_{P}}{K_{C}},RT\right)=0$$

$$K_p = K_C (RT)^{-1}$$

 $K_p = K_C (RT)^{\Delta n}$

$$\Delta n = -1$$

This is possible one for option (B).

- 3. Equilibrium const. is temp. dependent only.
- $\mathsf{C_2H_5OH}\left(\ell\right) + \mathsf{CH_3COOH}\left(\ell\right) \Longleftrightarrow \mathsf{CH_3COOC_2H_5}\left(\ell\right) + \mathsf{H_2O}\left(\ell\right).$ 4.

a 0.33a

0.33a

0.33a

$$K_c = \frac{(0.33a) \times (0.33a)}{(0.67a) \times (0.67a)} = K_c = 1/4.$$

Since, K_p is temperature dependent only. 5.

$$\alpha$$
 = .2, initially, $K_p = \frac{\alpha^2}{1-\alpha^2}P = \frac{(0.2)^2}{1-(.2)^2} \times 1 = \frac{.04}{.96} = .042$

If
$$\alpha = .5$$
, thus, $\frac{(.5)^2}{1-(.5)^2} \times P = .042$, $P = .126$

9. Since inert gas addition has no effect at const. volume.

12.
$$P_{NH_3} = P_{H_2S} = \frac{P}{2}$$
 Hence $K_p = P_{NH_3} \times P_{H_2S} = \frac{P}{2} \times \frac{P}{2} = \frac{P^2}{4}$

14.
$$K = [B(g)]^2 [C(g)]^3 = x^2y^3$$
. If $[C(g)]$ is doubled i.e. = 2y. Suppose $[B(g)]$ is z. Then

$$K = z^2 (2y)^3 = x^2y^3$$
 or $z^2 = \frac{1}{8} x^2$ or $z = \frac{1}{\sqrt{8}} x = \frac{1}{2\sqrt{2}} x$.

18.
$$N_2O_4(g) \rightleftharpoons 2 NO_2(s)$$

 $t = 0 \quad 0.1 \text{ mole} \quad 0$
 $t = eq \quad 0.05 \quad 0.1$

$$k = \frac{(0.1)^2}{0.05} = 0.2$$

19.
$$PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{2}(s)$$
 at eq, mole of PCI_{3} = mole of CI_{2}

So
$$K = \frac{[PCI_3][CI_2]}{[PCI_5]} = \frac{\left[\frac{0.2}{10}\right]\left[\frac{0.2}{10}\right]}{\frac{0.1}{[10]}} = 0.04$$

